Abstract

We present a general computational framework that enables one to generate realistic 3D microstructure models of heterogeneous materials from limited morphological information via stochastic optimization. In our framework, the 3D material microstructure is represented as a 3D array, whose entries indicate the local state of that voxel. The limited structural data obtained in various experiments correspond to different mathematical transformations of the 3D array. Reconstructing the 3D material structure from such limited data is formulated as an inverse problem, originally proposed by Yeong and Torquato [Phys. Rev. E 57, 495 (1998)], which is solved using the simulated annealing procedure. The utility, versatility and robustness of our general framework are illustrated by reconstructing a polycrystalline microstructure from 2D EBSD micrographs and a binary metallic alloy from limited angle projections. Our framework can be also applied in the reconstructions based on small-angle x-ray scattering (SAXS) data and has ramifications in 4D materials science (e.g., charactering structural evolution over time).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.