Abstract

Recently, heteroatom‐doped three‐dimensional (3D) nanostructured carbon materials have attracted immense interest because of their great potential in various applications. Hence, it is highly desirable to exploit a simple, renewable, scalable, multifunctional, and general strategy to engineer 3D heteroatom‐doped carbon nanomaterials. Herein, a simple, eco‐friendly, general, and effective way to fabricate 3D heteroatom‐doped carbon nanofiber networks on a large scale is reported. Using this method, 3D P‐doped, N,P‐co‐doped, and B,P‐co‐doped carbon nanofiber networks are successfully fabricated by the pyrolysis of bacterial cellulose immersed in H3PO4, NH4H2PO4, and H3BO3/H3PO4 aqueous solution, respectively. Moreover, the as‐prepared N,P‐co‐doped carbon nanofibers exhibit good supercapacitive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call