Abstract

Navigation requires a sense of direction ('compass'), which in mammals is thought to be provided by head-direction cells, neurons that discharge when the animal's head points to a specific azimuth. However, it remains unclear whether a three-dimensional (3D) compass exists in the brain. Here we conducted neural recordings in bats, mammals well-adapted to 3D spatial behaviours, and found head-direction cells tuned to azimuth, pitch or roll, or to conjunctive combinations of 3D angles, in both crawling and flying bats. Head-direction cells were organized along a functional-anatomical gradient in the presubiculum, transitioning from 2D to 3D representations. In inverted bats, the azimuth-tuning of neurons shifted by 180°, suggesting that 3D head direction is represented in azimuth × pitch toroidal coordinates. Consistent with our toroidal model, pitch-cell tuning was unimodal, circular, and continuous within the available 360° of pitch. Taken together, these results demonstrate a 3D head-direction mechanism in mammals, which could support navigation in 3D space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.