Abstract

Geospatial data constitutes a considerable part of Semantic Web data, but so far, its sources are inadequately interlinked in the Linked Open Data cloud. Geospatial Interlinking aims to cover this gap by associating geometries with topological relations like those of the Dimensionally Extended 9-Intersection Model. Due to its quadratic time complexity, various algorithms aim to carry out Geospatial Interlinking efficiently. We present JedAI-spatial, a novel, open-source system that organizes these algorithms according to three dimensions: (i) Space Tiling, which determines the approach that reduces the search space, (ii) Budget-awareness, which distinguishes interlinking algorithms into batch and progressive ones, and (iii) Execution mode, which discerns between serial algorithms, running on a single CPU-core, and parallel ones, running on top of Apache Spark. We analytically describe JedAI-spatial’s architecture and capabilities and perform thorough experiments to provide interesting insights about the relative performance of its algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.