Abstract

AbstractSnow, from its fall until its full melting, undergoes a structural metamorphism that is governed by temperature and humidity fields. Among the many possible mechanisms that contribute to snow metamorphism, those that depend only on curvature are the most accessible to modelling. In this paper, techniques of volume data analysis adapted to the complex geometry of snow are introduced and then applied to experimental tomographic data coming from the isothermal metamorphism of snow near 0°C. In particular, an adaptive algorithm of curvature computation is described. Present results on the evolution of specific surface area and anisotropy already show that such image-analysis methods are relevant tools for the characterization of real snow microstructures. Moreover, the evolution of the curvature distribution with time provides valuable information for the development of sintering models, in the same way as a possible quantitative calibration of snow-grain coarsening laws.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call