Abstract

A fiber Bragg grating (FBG) based three-dimensional (3D) force sensor for a humanoid prosthetic hand is designed, which can precisely detect 3D force and compensate for ambient temperature. FBG was encapsulated in polydimethylsiloxane (PDMS) for force sensitization and immobilization, and the structural parameters of the sensor were optimized by using finite element simulation, so that its sensitivity to 3D force is enhanced. In the meantime, the calibration experiments for normal force fZ, shear force fX/fY, and temperature were conducted, and the 3D force data were decoupled using the least square (LS) and backpropagation (BP) neural networks decoupling methods, so that an overall decoupling error is 0.038. The results show that the sensor has a simple structure, high sensitivity, high linearity, good creep resistance, and rapid decoupling, providing a successful design for the 3D force detection of a humanoid prosthetic hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.