Abstract

The authors sought to evaluate the feasibility and accuracy of three-dimensional (3D) fluoroscopic guidance for percutaneous placement of thoracic and lumbar pedicle screws in three cadaveric specimens. After attaching a percutaneous dynamic reference array to the surgical anatomy, an isocentric C-arm fluoroscope was used to obtain images of the region of interest. Light-emitting diodes attached to the C-arm unit were tracked using an electrooptical camera. The image data set was transferred to the image-guided workstation, which performed an automated registration. Using the workstation display, pedicle screw trajectories were planned. An image-guided drill guide was passed through a stab incision, and this was followed by sequential image-guided pedicle drilling, tapping, and screw placement. Pedicle screws of various diameters (range 4-6.5 mm) were placed in all pedicles greater than 4 mm in diameter. Postoperatively, thin-cut computerized tomography scans were obtained to determine the accuracy of screw placement. Eighty-nine (94.7%) of 94 percutaneous screws were placed completely within the cortical pedicle margins, including all 30 lumbar screws (100%) and 59 (92%) of 64 thoracic screws. The mean diameter of all thoracic pedicles was 6 mm (range 2.9-11 mm); the mean diameter of the five pedicles in which wall violations occurred was 4.6 mm (range 4.1-6.3 mm). Two of the violations were less than 2 mm beyond the cortex; the others were between 2 and 3 mm. Coupled with an image guidance system, 3D fluoroscopy allows highly accurate spinal navigation. Results of this study suggest that this technology will facilitate the application of minimally invasive techniques to the field of spine surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.