Abstract

Three dimensional fluid-thermal-structure multiphysics interaction simulation model of aluminium extrusion process has been simulated and presented in this paper. This multiphysics complex geometrical engineering process is simulated effectively using computational fluid dynamics (CFD) simulation with very high accuracy, where the aluminium material is treated as a fluid that has a very high viscosity which depends on temperature and velocity. When aluminium moving, the inner friction will work as a heat source, therefore the model of the heat transfer is completely coupled together with those governing model of the fluid dynamics. Material properties come into a viscosity function that can be related to the flow stress locally depending on forming velocity and temperature. In addition, the stresses distribution in the die that introduces due to the fluid pressure and the thermal loads has been modelled by fully coupled the simulation model with the structural mechanic's analysis. Fully three-dimensional results during the process of the temperature distribution, velocity profile, von Mises stress distribution, total displacement and deflection distribution, equivalent volumetric strain distribution, and pressure distribution are presented and analysed with a focus on the fundamental understanding. The model is shown to be able to provide a computer-aided design tool for optimize this complex engineering process by improving productivity and reducing scrap.

Highlights

  • Aluminium extrusion is a compressive deformation process in which a billet is pressed through an orifice or die opening in the shape of the required cross-section

  • Computational fluid dynamics (CFD) simulation can be used effectively to simulate such engineering processes with very high accuracy, where the aluminium material is treated as a fluid that has a very high viscosity which depends on temperature and velocity

  • The inner friction will work as a heat source, the model of the heat transfer is completely coupled together with those governing model of the fluid dynamics

Read more

Summary

ORIGINAL ARTICLE

ABSTRACT – Three dimensional fluid-thermal-structure multiphysics interaction simulation model of aluminium extrusion process has been simulated and presented in this paper. This multiphysics complex geometrical engineering process is simulated effectively using computational fluid dynamics (CFD) simulation with very high accuracy, where the aluminium material is treated as a fluid that has a very high viscosity which depends on temperature and velocity. Three-dimensional results during the process of the temperature distribution, velocity profile, von Mises stress distribution, total displacement and deflection distribution, equivalent volumetric strain distribution, and pressure distribution are presented and analysed with a focus on the fundamental understanding. KEYWORDS Aluminium extrusion; CFD; multiphysics; fluid-thermal-structure interaction; three-dimensional model; stress

INTRODUCTION
COMPUTATIONAL MODEL
MODELLING PARAMETERS
RESULTS AND DISCUSSION
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.