Abstract

Detailed measurements of the subsonic flow in a large-scale, plane turbine cascade were made to evaluate the three-dimensional nature of the flow field. Tests were conducted at a passage aspect ratio of 1.0 with a collateral inlet boundary layer. Flow visualization was done on airfoil and endwall surfaces. Velocity and pressure measurements were taken before and behind the cascade and in six axial planes within a cascade passage, using a five-hole probe. Hot wire measurements were taken in the endwall boundary layer within the cascade passage. The characteristics of the endwall boundary layer are presented, showing that three-dimensional separation is an important feature of end-wall flow. A large part of the endwall boundary layer was found to be very thin when compared to the cascade inlet boundary layer. Data showing the growth of aerodynamic loss through the passage are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call