Abstract

Thin-plate weirs are widely used to monitor the flow rate in open channels. Thereby, three dimensional (3D) modeling of the flow over a weir in an open channel can be considered as one of the main topics in hydraulic science. In this study, the flow over a sharp-crested v-notch weir (SCVW) is simulated by a 3D numerical model. Laboratory experiments were conducted to monitor and measure the behavior of the SCVW in practice. Finally, the simulated velocity distributions, water surface profiles, and hydraulic jump were compared with those of the experimental data. Due to the turbulent nature of the flow over the SCVW, a Reynolds stress model (RSM) and three types of the k–ϵ turbulence models with the fractional volume of fluid technique (VOF) were used in the analysis. In this respect, the two-phase solution method and dense mesh were used in generating the simulation domain. Results indicated that the RSM exhibited higher accuracy in defining the velocity distribution, complex flow pattern, and predicting the hydraulic jump formation downstream of the SCVW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.