Abstract
A three-dimensional viscous solver has been used to model the flow in the stator of a highly loaded single-stage transonic fan. The fan has a very high level of aerodynamic loading at the hub, which results in a severe hub endwall stall. Prediction of the flow at the 100 percent speed, peak efficiency condition has been carried out and comparisons are made with experiment, including stator exit traverses and fixed blade surface pressure tappings and flow visualisation. Comparisons are also made with an analysis of the rotor and stator rows using the DERA S1–S2 method. The three-dimensional predictions show good qualitative agreement with measurements in all regions of the flow field. Quantitatively the flow away from the hub region agreed the best. The general trends of the severe hub endwall stall were predicted, although the shape and size did not match experiment exactly. The S1–S2 system was unable to predict the hub endwall stall, since it arises from fully three-dimensional flow effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.