Abstract

For $Y,Y^+$ three-dimensional smooth varieties related by a flop, Bondal and Orlov conjectured that the derived categories $D^b({\rm coh}(Y))$ and $D^b({\rm coh}(Y^+))$ are equivalent. This conjecture was recently proved by Bridgeland. Our aim in this paper is to give a partially new proof of Bridgeland's result using noncommutative rings. The new proof also covers some mild singular and higher-dimensional situations (including those occuring in the recent paper by Chen [11]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.