Abstract

With the fast development of flexible wearable electronics, mobile electronic equipment, electric tool and electric vehicles, high specific capacity, superior cycle stability and excellent fast-charge performance are required for lithium-ion batteries (LIBs). Nevertheless, commercial graphite with the limited theoretical capacity (372 mAh g−1) and short lifespan is difficult to satisfy the requirements of the new generation of LIBs. In this work, the three-dimensional flexible molybdenum oxynitride (MNO) thin films with non-binder were prepared by magnetron sputtering approach. The charge transfer resistance and Li-ion diffusion coefficient were measured by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and the results show that molybdenum nitride is helpful to increase the diffusion and electron transfer of Li-ion. The MNO thin film annealed at 300 °C with irregular aggregate matrix structure shows a discharge capacity of 413 mAh g−1 after 180 cycles at 1 A g−1. The outstanding rate performance and cycle stability suggest that these binder-free thin film electrodes, especially nitrides, offer great opportunity for energy storage systems with fast-charge capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.