Abstract
The understanding of cutting mechanism is important for the improvement of machinability of difficult-to-cut materials. Finite element method (FEM) is an effective way to study the metal cutting process. This paper establishes a finite element model of cylindrical turning of titanium alloys, and then simulates cutting force and tool temperature distribution under different cutting parameters. The simulation results show that in the high-speed cylindrical turning of titanium alloys, depth of cut has a greater influence on principal cutting force than feed rate, while the effect of feed rate on the maximum tool temperature is more distinct than that of depth of cut.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.