Abstract

To establish a three-dimensional finite element model of the upper palate, pharyngeal cavity, and levator veli palatini muscle in patients with unilateral complete cleft palate, simulate two surgical procedures that the two-flap method and Furlow reverse double Z method, observe the stress distribution of the upper palate soft tissue and changes in pharyngeal cavity area after different surgical methods, and verify the accuracy of the model by reconstructing and measuring the levator veli palatini muscle. Mimics, Geomagic, Ansys, and Hypermesh were applied to establish three-dimensional finite element models of the pharyngeal cavity, upper palate, and levator veli palatini muscle in patients with unilateral complete cleft palate. The parameters including length, angle, and cross-sectional area of the levator veli palatini muscle etc. were measured in Mimics, and two surgical procedures that two-flap method and Furlow reverse double Z method were simulated in Ansys, and the area of pharyngeal cavity was measured by hypermesh. A three-dimensional finite element model of the upper palate, pharyngeal cavity, and bilateral levator veli palatini muscle was established in patients with unilateral complete cleft palate ; The concept of horizontal projection characteristics of the palatal dome was applied to the finite element simulation of cleft palate surgery, vividly simulating the displacement and elastic stretching of the two flap method and Furlow reverse double Z method during the surgical process; The areas with the highest stress in the two-flap method and Furlow reverse double Z method both occur in the hard soft palate junction area; In resting state, as measured, the two flap method can narrow the pharyngeal cavity area by 50.9%, while the Furlow reverse double Z method can narrow the pharyngeal cavity area by 65.4%; The measurement results of the levator veli palatini muscle showed no significant difference compared to previous studies, confirming the accuracy of the model. The finite element method was used to establish a model to simulate the surgical procedure, which is effective and reliable. The area with the highest postoperative stress for both methods is the hard soft palate junction area, and the stress of the Furlow reverse double Z method is lower than that of the two-flap method. The anatomical conditions of pharyngeal cavity of Furlow reverse double Z method are better than that of two-flap method in the resting state. This article uses three-dimensional finite element method to simulate the commonly used two-flap method and Furlow reverse double Z method in clinical cleft palate surgery, and analyzes the stress distribution characteristics and changes in pharyngeal cavity area of the two surgical methods, in order to provide a theoretical basis for the surgeon to choose the surgical method and reduce the occurrence of complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call