Abstract

The pattern of Rayleigh-Benard convection of air in a rectangular box heated-from-below is studied by numerically solving the three-dimensional time-dependent Navier-Stokes equations under the Boussinesq approximation. Slightly supercritical Rayleigh number was adopted to track the evolutions of flow structure as a function of enclosure's aspect ratio (A=L/H). The flow will asymptotically evolve to different patterns, among which, two possible types of flow pattern are found. One consists of the pair of straight vortex rolls and the other appears as closed vortex rings. The transition between the flow patterns indicates that there exists a flow bifurcation with the variation of container's aspect ratio. In addition, both steady and oscillatory flows have been observed, corresponding to the pair of straight vortex rolls and the vortex ring, respectively. The complexity of flow structure tends to increase with the increasing aspect ratio of the rectangular enclosure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.