Abstract

The aim of this work was to analyse the influence of the nozzle structure and parameters on the molten steel flow in beam blank continuous casting. A three-dimensional steady state finite element model was developed to compute the flow field and the meniscus fluctuation in the mould. The volume of fluid model was used to track the free surface evolution at the meniscus. It can be concluded that compared with a through conduit submerged entry nozzle (SEN), a three lateral hole SEN will reduce the impact depth, change greatly the velocity at the free surface and intensify the fluctuation of the free surface. As a whole, the fluid flow in the mould will be improved, which will help to melt the mould powder and improve the absorption of non-metallic inclusions, thus improving steel cleanness. The most rational rake angle for the three lateral hole SEN is 9°. Meanwhile, the SEN immersion depth should be in the range 200–250 mm if the casting speed is about 0·9–1·1 m min−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call