Abstract

This work investigates the free vibrations of magneto-electro-elastic cylindrical panels based on three-dimensional theory. Firstly, the general solutions for transversely isotropic magneto-electro-elastic materials are introduced and the displacement functions in the general solutions are expanded in trigonometric functions along the circumferential and axial directions. Then an ordinary differential equation of the displacement functions in radial direction is derived and solved. As a result, the frequency equations are obtained through the traction-free conditions on the cylindrical surfaces of the panel as well as the electric and magnetic conditions. For the torsion and thickness-shear modes, the frequency equations in simpler forms are presented. It is found that the magneto-electro-elastic coupling effects disappeared in torsion vibration. Meanwhile, the frequencies of pure elastic materials and magneto-electro-elastic materials have an explicit relation for the thickness-shear modes. The aforementioned solutions satisfy all the governing equations and boundary conditions point by point and they are three-dimensionally exact. Finally the numerical example demonstrates the present method and is compared with those from finite element method. Parametric investigation is also conducted to show the behavior of free vibrations of cylindrical panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call