Abstract

Most bone tissue-engineering research uses porous three-dimensional (3D) scaffolds for cell seeding. In this work, scaffold-less 3D bone-like tissues were engineered from rat bone marrow stromal cells (BMSCs) and their autogenous extracellular matrix (ECM). The BMSCs were cultured on a 2D substrate in medium that induced osteogenic differentiation. After reaching confluence and producing a sufficient amount of their own ECM, the cells contracted their tissue monolayer around two constraint points, forming scaffold-less cylindrical engineered bone-like constructs (EBCs). The EBCs exhibited alizarin red staining for mineralization and alkaline phosphatase activity and contained type I collagen. The EBCs developed a periosteum characterized by fibroblasts and unmineralized collagen on the periphery of the construct. Tensile tests revealed that the EBCs in culture had a tangent modulus of 7.5 +/- 0.5 MPa at 7 days post-3D construct formation and 29 +/- 9 MPa at 6 weeks after construct formation. Implantation of the EBCs into rats 7 days after construct formation resulted in further bone development and vascularization. Tissue explants collected at 4 weeks contained all three cell types found in native bone: osteoblasts, osteocytes, and osteoclasts. The resulting engineered tissues are the first 3D bone tissues developed without the use of exogenous scaffolding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.