Abstract

A procedure is described for constructing a three-dimensional model of fibril-forming human type II collagen based on the "Smith" microfibril model. This model is a complex of five individual collagen triple-helical molecules, and is based on known structural parameters for collagen. Both experimental and theoretical data were used as constraints to guide the modeling. The resulting fibril model for type II collagen is in agreement with both physical and chemical characteristics produced by experimental staining patterns of type II fibrils. Some advantages of the type II model are that the stereochemistry of all the sidechain groups is accounted for, and specific atomic interactions can now be studied. This model is useful for: development of therapeutics for collagen related diseases; development of synthetic collagen tissues; design of chemical reagents (i.e., tanning agents) to treat collagen-related products; and study of the structural and functional aspects of type II collagen. Described is the procedure by which the Smith microfibril of type II collagen was developed using molecular modeling tools, validation of the model by comparison to electron-microscopic images of fibril staining patterns, and some applications of this microfibril model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call