Abstract

To evaluate the accuracy of a 3-dimensional (3D) navigation system using electromagnetically tracked tools to explore its potential in patients. The 3D navigation accuracy was quantified on a phantom and in a porcine model using the same setup and vascular interventional suite. A box-shaped phantom with 16 markers was scanned in 5 different positions using computed tomography (CT). The 3D navigation system registered each CT volume in the magnetic field. A tracked needle was pointed at the physical markers, and the spatial distances between the tracked needle positions and the markers were calculated. Contrast-enhanced CT images were acquired from 6 swine. The 3D navigation system registered each CT volume in the magnetic field. An electromagnetically tracked guidewire and catheter were visualized in the 3D image and navigated to 4 specified targets. At each target, the spatial distance between the tracked guidewire tip position and the actual position, verified by a CT control, was calculated. The mean accuracy on the phantom was 1.28±0.53 mm, and 90% of the measured distances were ≤1.90 mm. The mean accuracy in swine was 4.18±1.76 mm, and 90% of the measured distances were ≤5.73 mm. This 3D navigation system demonstrates good ex vivo accuracy and is sufficiently accurate in vivo to explore its potential for improved endovascular navigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.