Abstract

A hallmark of heart failure is mitochondrial dysfunction leading to a bioenergetics imbalance in the myocardium. Consequently, there is much interest in targeting mitochondrial abnormalities to attenuate the pathogenesis of heart failure. This review discusses (i) how electron microscopy (EM) techniques have been fundamental for the current understanding of mitochondrial structure–function, (ii) the paradigm shift in resolutions now achievable by 3‐D EM techniques due to the introduction of direct detection devices and phase plate technology, and (iii) the application of EM for unravelling mitochondrial pathological remodelling in heart failure. We further consider the tremendous potential of multi‐scale EM techniques for the development of therapeutics, structure‐based ligand design and for delineating how a drug elicits nanostructural effects at the molecular, organelle and cellular levels. In conclusion, 3‐D EM techniques have entered a new era of structural biology and are poised to play a pivotal role in discovering new therapies targeting mitochondria for treating heart failure.Linked ArticlesThis article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.