Abstract

A three-dimensional electromagnetic particle-in-cell code with Monte Carlo collision (PIC-MCC) is developed for MIMD parallel supercomputers. This code uses a standard relativistic leapfrog scheme incorporating Monte Carlo calculations to push plasma particles and to include collisional effects on particle orbits. A local finite-difference time-domain method is used to update the self-consistent electromagnetic fields. The code is implemented using the General Concurrent PIC (GCPIC) algorithm, which uses domain decomposition to divide the computation among the processors. Particles must be exchanged between processors as they move among subdomains. Message passing is implemented using the Express Cubix library and the PVM. We evaluate the performance of this code using a 512-processor Intel Touchstone Delta, a 512-processor Intel Paragon, and a 256-processor CRAY T3D. It is shown that a high parallel efficiency exceeding 95% has been achieved on all three machines for large problems. We have run PIC-MCC simulations using several hundred million particles with several million collisions per time step. For these large-scale simulations the particle push time achieved is in the range of 90–115 ns/particle/time step, and the collision calculation time in the range of a few hundred nanoseconds per collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.