Abstract
Considering the increasing concern for food safety, electrochemical methods for detecting specific ingredients in the food are currently the most efficient method due to their low cost, fast response signal, high sensitivity, and ease of use. The detection efficiency of electrochemical sensors is determined by the electrode materials' electrochemical characteristics. Among them, three-dimensional (3D) electrodes have unique advantages in electronic transfer, adsorption capacity and exposure of active sites for energy storage, novel materials, and electrochemical sensing. Therefore, this review begins by outlining the benefits and drawbacks of 3D electrodes compared to other materials before going into more detail about how 3D materials are synthesized. Next, different types of 3D electrodes are outlined together with common modification techniques for enhancing electrochemical performance. After this, a demonstration of 3D electrochemical sensors for food safety applications, such as detecting components, additives, emerging pollutants, and bacteria in food, was given. Finally, improvement measures and development directions of electrodes with 3D electrochemical sensors are discussed. We think that this review will help with the creation of new 3D electrodes and offer fresh perspectives on how to achieve extremely sensitive electrochemical detection in the area of food safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.