Abstract

Dislocations and the elastic fields they induce in anisotropic elastic crystals are basic for understanding and modeling the mechanical properties of crystalline solids. Unlike previous solutions that provide the strain and/or stress fields induced by dislocation loops, in this paper, we develop, for the first time, an approach to solve the more fundamental problem—the anisotropic elastic dislocation displacement field. By applying the point-force Green’s function for a three-dimensional anisotropic elastic material, the elastic displacement induced by a dislocation of polygonal shape is derived in terms of a simple line integral. It is shown that the singularities in the integrand of this integral are all removable. The proposed expression is applied to calculate the elastic displacements of dislocations of two different fundamental shapes, i.e. triangular and hexagonal. The results show that the displacement jump across the dislocation loop surface exactly equals the assigned Burgers vector, demonstrating that the proposed approach is accurate. The dislocation-induced displacement contours are also presented, which could be used as benchmarks for future numerical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call