Abstract

An analysis of three-dimensional (3-D) effects in CMOS latchup under dynamic conditions that expands on previous work limited to steady state is presented. Measurements of the minimum duration of voltage pulses and the ramp slew rate needed to induce latchup and have been performed on devices of different widths and layouts, and the latchup susceptibility to transient stimuli has been found to depend on the device dimensions and geometry. By means of simple analytical models it is shown that such a dependence originates from the nonideal scaling of the distributed resistances and capacitances due to the 3-D nature of the structure terminating regions.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.