Abstract

An extension to three-dimensional (3-D) edge-based finite-element analysis for modeling electrically large fan-like bodies as discrete bodies of revolution is given. By exploiting the overlapping symmetries between a fan-like body and a modal expansion of the electromagnetic fields, only one lobe of the problem need be solved by the finite-element method without introducing approximations. This computational scaling makes possible the solution of electrically large structures much more efficiently. However, a periodic phase-boundary condition (PBC) must be applied to the faces of the mesh describing a single slice of the body and this condition must be enforced on both the electric and magnetic fields for a robust solution. Details on the implementation of the PBCs are given along with results which validate the overall technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.