Abstract

Here, we propose a kinetically controlled DNA self-assembly pathway based on exponential hairpin assembly (EHA) to obtain a novel DNA network-like structure. This method is very simple over existing DNA self-assembly techniques, only requiring the input of four DNA hairpins to form dendritic nanostructures. AFM imaging reveals the expected dendritic nanostructures, and they interweave to form a regular nanoporous structure that has a mesh size ranging from 200 to 400 nm. The network-like structure is very large and almost isotropic along all directions. At present, so large and regular self-assembly nanomaterials are very rare. The DNA network can potentially be used as a nanoporous material and a general signal carrier for bioanalytical application. As a model, the DNA nanomaterial has been successfully applied to detect nucleic acids coupled with the AuNP colorimetric strategy with a detection limit of 25 pM for the naked eye within 15 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.