Abstract

Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.