Abstract

One of the factors that determines the suitability of limestone for industrial use and its commercial value is phosphorus (P) content, i.e., the weight percentage of phosphorus contained in small quantities of limestone. Because P content changes locally, geostatistical techniques including semivariogram, ordinary kriging, and conditional indicator sequential simulation were used in this study to identify the spatial correlation of P content and to estimate its three-dimensional distribution in an open-pit mine. The P content data at 43,000 points of five different bench levels were analyzed. It was found that the horizontal semivariograms produced by using the data at the same bench level show anisotropic behavior and are represented by the sum of two spherical models with different ranges and sills. The twelve vertical semivariograms were also constructed from P content in boring cores. After these semivariograms were classified into four types, a multilayered neural network was applied to clarify the horizontal distribution of each one. One of the twelve semivariograms was assigned to an arbitrary grid point in the study area by the criterion that its type is the same as the one estimated at the point and the borehole site producing the semivariogram is the nearest to the point. With this technique, ordinary kriging combined with the semivariogram of borehole data provided a proper estimation of P content in the depth direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call