Abstract

The purpose of this study is to perform numerical simulation for the design and optimization of three-dimensional magnetohydrodynamic (MHD) controlled hypersonic inlets. An airframe/propulsion integrated module was first established for a waverider-based hypersonic vehicle at design Mach number of 6. Using this generic configuration, an MHD-based technique for large-scale inlet flow control is studied at the off-designed Mach value of 8.5. The results indicate that the inlet mass flowrate can act as an optimization criterion. Using a proper value of mass flowrate, an MHD generator possessing reasonable design parameters can effectively restore the flow field shock structure, i.e. shock-on-lip condition and improves the flow field characteristics at the combustor entrance at higher Mach number than the design value. The results further reveal that the MHD effect on the flow with higher load factor helps to extract more electric power from the external MHD generator and also helps in improving the performance of the combustor entrance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.