Abstract

We propose an algorithm to compute a conforming Delaunay mesh of a bounded domain in ${\Bbb R}^3$ specified by a piecewise linear complex. Arbitrarily small input angles are allowed, and the input complex is not required to be a manifold. Our algorithm encloses the input edges with a small buffer zone, a union of balls whose sizes are proportional to the local feature sizes at their centers. In the output mesh, the radius-edge ratio of the tetrahedra outside the buffer zone is bounded by a constant independent of the domain, while that of the tetrahedra inside the buffer zone is bounded by a constant depending on the smallest input angle. Furthermore, the output mesh is graded. Our work is the first that provides quality guarantees for Delaunay meshes in the presence of small input angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.