Abstract

Abstract In industrial production, the absence of clear component identification and unrecognized component defects can lead to a lack of protection against product piracy and unforeseen faults in machinery and equipment. In this context, data, which are stored directly in the subsurface region of a component ensuring its clear identification, as well as sensitive materials which act as sensors for high loading, can contribute to problem-oriented solutions. For robust, forgery-proof component identification that is inseparably linked to the component, three-dimensional data matrix codes are introduced into the component's subsurface region via a laser-induced local heat treatment. This technology ensures a sufficient data density. By locally tempering the metastable austenitic steel, areas are created where mechanical loads exceeding a defined level cause changes in the microstructure of the heat treated subsurface region. By means of adapting suitable read-out technologies, such as high-resolution eddy-current technology and the harmonic analysis of eddy-current signals, the data and load information stored in the component's subsurface region can be read non-destructively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.