Abstract

Electronic devices are typically manufactured in planar layouts, but many emerging applications, from optoelectronics to wearables, require three-dimensional curvy structures. However, the fabrication of such structures has proved challenging due, in particular, to the lack of an effective manufacturing technology. Here, we show that conformal additive stamp (CAS) printing technology can be used to reliably manufacture three-dimensional curvy electronics. CAS printing employs a pneumatically inflated elastomeric balloon as a conformal stamping medium to pick up pre-fabricated electronic devices and print them onto curvy surfaces. To illustrate the capabilities of the approach, we use it to create various devices with curvy shapes: silicon pellets, photodetector arrays, electrically small antennas, hemispherical solar cells and smart contact lenses. We also show that CAS printing can be used to print onto arbitrary three-dimensional surfaces. A manufacturing technology that uses a deformable balloon stamp to pick up pre-fabricated electronic devices and print them onto three-dimensional surfaces can be used to create devices with curvy shapes, including electrically small antennas, hemispherical solar cells and smart contact lenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.