Abstract

In this review we analyze a representative sample of efforts to engineer three dimensional small-diameter (<6 mm) vascular grafts, concentrating on biomaterial substrates, cellular choices, and biomechanical stimulation. Natural or synthetic scaffolds for vascular engineering need to mimic the natural extracellular matrix microenvironment, maintain physiological mechanical properties, be biocompatible and cell adhesive, and control cellular structure and function. Additionally, multicellular culture with stem cells that are highly proliferative and differentiable should be used to better recapitulate native vasculature. Fluid flow and co-culture of perivascular and endothelial cells produce synergistic effects. Also, fluid flow prevents cell disengagement and facilitates appropriate cellular orientation, making bioreactors an auspicious addition to graft culturing techniques. Overall, stem cells, co-culture, and pulsatile flow are important for the rapid and successful development of a viable small-diameter tissue engineered vascular graft for in vivo use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.