Abstract

High performance of electrocatalysts for direct methanol fuel cells was demonstrated by three-dimensional (3D) graphene (GR) decorated with platinum (Pt)–gold (Au) alloy nanoparticles (3D-GR/PtAu). The 3D-GR/PtAu composite with a morphology like a crumpled paper ball was synthesized from a colloidal mixture of GR and Pt–Au alloy nanoparticles with aerosol spray drying. The 3D-GR/PtAu had a high specific surface area and electrochemical surface area of up to 238 and 325m2/g(Pt), respectively, and the electrocatalytic applications of the 3D-GR/PtAu were examined through methanol oxidation reactions. The 3D-GR/PtAu had the highest electrocatalytic activity for methanol oxidation reactions compared with commercial Pt–carbon black and Pt-GR. The 3D-GR/PtAu was also highly sensitive electrocatalytic activity in the methanol oxidation reaction compared with the 2D-GR/Pt–Au. Furthermore, the electrocatalytic activity of the 3D-GR/PtAu had the highest performance among the catalysts containing Pt, Au, and GR for the methanol oxidation reactions. The increased electrocatalytic activity is attributed to the high specific surface area of the 3D formation and the effective surface structure of the Pt–Au alloy nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call