Abstract

It is well-established that the structures dominate the properties. Inspired by the highly contorted and crumpled maxilloturbinate inside dog nose, herein an artificial nanostructure, i.e., 3D crumpled graphene-based nanosheets, is reported with the simple fabrication, detailed characterizations, and efficient gas-sensing applications. A facile supramolecular noncovalent assembly is introduced to modify graphene with functional molecules, followed with a lyophilization process to massively transform 2D plane graphene-based nanosheets to 3D crumpled structure. The detailed morphological characterizations reveal that the bioinspired nanosheets exhibit full consistency with maxilloturbinate. The fabricated 3D crumpled graphene-based sensors exhibit ultrahigh response (Ra/Rg = 3.8) toward 10 ppm of NO2, which is mainly attributed to the specific maxilloturbinate-mimic structure. The sensors also exhibit excellent selectivity and sensing linearity, reliable repeatability, and stability. Interestingly, it is observed that only 4 mg of graphene oxide (GO) raw materials can produce more than 1000 gas sensors, which provides a new insight for developing novel 3D biomimetic materials in large-scale gas sensor production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.