Abstract
SummaryHigh‐frequency force balance test is a major technical means to evaluate the wind effect of super high‐rise buildings. Most super high‐rise buildings have the characteristic that the first two‐order modal frequencies are close, and thus, considerable modal coupling effects (MCEs) may occur under wind load. For a balance model system (BMS), MCEs increase the difficulty of correcting aerodynamic distortion signals. For the wind‐induced vibration analysis of a structural system (PSS), the calculation results of the wind‐induced response and the equivalent static wind load (ESWL) may be significantly affected without considering MCE. Based on the above‐mentioned signal distortion of BMS and the modal coupling problem of PSS, this study proposes a wind‐induced vibration calculation method for the two coupled systems (BMS and PSS). The method uses the second‐order blind identification technique based on complex modal theory and the Bayesian spectral density method considering full aerodynamic characteristics to achieve effective correction of the distortion signal in BMS. In addition, it deduces the calculation method of the wind‐induced response and ESWL considering the three‐dimensional coupled vibration of a super high‐rise building. The wind effect calculation results of a 528‐m super high‐rise building confirm the necessity and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.