Abstract

This paper presents the endovascular navigation of a ferromagnetic microdevice using magnetic resonance imaging (MRI)-based predictive control. The concept was studied for the future development of microrobots designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A system software architecture is presented illustrating the different software modules to allow three-dimensional (3-D) navigation of a microdevice in blood vessels, namely: (i) vessel path extraction, (ii) magnetic gradient steering, (iii) tracking and (iv) closed-loop navigation control. First, the navigation path of the microrobot into the blood vessel is extracted using the Fast Marching Method from the pre-operation images (3-D MRI imaging) to guide the microrobot from the injection point to the tumor area through the anarchic vessel network. Based on the pre-computed path, a Model Predictive Controller is proposed for robust time-multiplexed navigation along a 3-D path in the presence of pulsative flow. The simulation results suggest the validation of the proposed image processing and control algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call