Abstract

A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress–strain subloops and tension–compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.