Abstract

Three-dimensional printing is increasingly recognized as a valuable tool for congenital heart disease (CHD) procedural planning and education. Cost and complexity currently limit the more widespread adoption of this technology. We sought to demonstrate the accuracy of 3D printed CHD models created from contrast-enhanced magnetic resonance imaging (MRI) and computed tomography (CT) scans using free software and an inexpensive desktop fused filament fabrication (FFF) printer. Solid segmentations of the intracardiac blood pool were created with the program ITK-SNAP. Using the computer program Meshmixer, the segmentation model was hollowed to create a 0.8 mm shell with the inner surface representing endocardium. Three-dimensional models were created on an FFF printer. Four arteries and a ventricular septal defect (VSD) were 3D printed and measured for accuracy. Five models were used to assess candidacy for biventricular surgical repair and one to guide an interventional catheterization. All six patients underwent intervention planned with the 3D models. The computer model shell walls all achieved specifications within 0.05 mm of the designated 0.8 mm thickness and the original solid blood pool segmentation fit within the hollowed 3D model. The 3D printed arteries and VSD all measured accurately to within 0.5 mm of their source computer model. Accurate 3D printed models of complex, pediatric CHD may be created from volumetric MRI and CT studies using free online software and printed on an inexpensive desktop printer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call