Abstract

Aided by advancements in computer speed and modeling techniques, computational modeling of cardiac function has continued to develop over the past twenty years. The goal of the current study was to develop a computational model that provides blood-tissue interaction under physiologic flow conditions, and apply it to a thin-walled model of the left heart. To accomplish this goal, the Immersed Boundary Method was used to study the interaction of the tissue and blood in response to fluid forces and changes in tissue pathophysiology. The fluid mass and momentum conservation equations were solved using Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE). A left heart model was developed to examine diastolic function, and consisted of the left ventricle, left atrium, and pulmonary flow. The input functions for the model included the pulmonary driving pressure and time-dependent relationship for changes in chamber tissue properties during the simulation. The results obtained from the left heart model were compared to clinically observed diastolic flow conditions for validation. The inflow velocities through the mitral valve corresponded with clinical values (E-wave = 74.4 cm/s, A-wave = 43 cm/s, and E/A = 1.73). The pressure traces for the atrium and ventricle, and the appearance of the ventricular flow fields throughout filling, agreed with those observed in the heart. In addition, the atrial flow fields could be observed in this model and showed the conduit and pump functions that current theory suggests. The ability to examine atrial function in the present model is something not described previously in computational simulations of cardiac function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.