Abstract
We investigate the three-dimensional behavior of gravity coupled to a dynamical unit timelike vector: the aether, and present two new classes of exact charged solutions. When c_{13}=0,\Lambda'=0$, we find the solutions is the usual BTZ black hole but now with an universal horizon. In the frame of black hole chemistry, we then calculate the temperature of the universal horizons and, construct the Smarr formulas and first law in the three cases: quasi-asymptotically flat, aether asymptotically flat and quasi-BTZ black hole spacetime. We found these universal horizons obey an exact (or slightly modified) first law of black hole mechanics and may have an entropy and, black hole mass can be interpreted as enthalpy of spacetime. Then the holography may be extended to these horizons under violating Lorentz symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.