Abstract
The angioarchitecture of the spinal cord and microvascular changes after acute and subacute spinal cord injury (SCI) have been reported in rodents. Microvascular changes after chronic SCI have not been explored. We characterized three-dimensional microvascular changes during the chronic phase of cervical hemicontusion SCI in rats. At 12 weeks after 1.2-mm hemicontusion injury, microvascular parameters, including vascular volume, ratio of vascular volume to tissue volume, vascular number, and vascular separation, were measured at the epicenter and each cord segment, and the percentage and volume of spinal vessels with different diameters were measured by micro computed tomography at the injury segment. The 1.2-mm hemicontusion injury applied a compressive force of 1.050 ± 0.103 N to the cord, resulting in a cavity and a significant decrease in microvasculature at the epicenter. The vascular volume, ratio of vascular volume to tissue volume, and vascular number of the C5 cord decreased by 40%, 38%, and 36% at 12 weeks after SCI, whereas vascular separation increased by 54% compared with the control group. In the chronic phase after SCI, the percentage and volume of spinal microvessels at the contusion segment decreased significantly (especially vessels with diameters <40 μm). Blood supply to the cervical spinal cord is insufficient during the chronic phase of cervical hemicontusion SCI, especially in microvessels with diameters <40 μm. These results may provide a basis to explore microvascular changes of SCI during the chronic phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.