Abstract

Thermohydraulic studies based on porous medium analogy, pertinent to dual channel Cable-in-Conduit Conductors (CICCs) used in International Thermonuclear Experimental Reactor (ITER), are explored in the present work. Dual channel CICC used in Toroidal Field (TF) Coil consists of a circular jacket in which superconducting cable bundles are placed in the annular channel separated from the central channel by a spiral. The cable bundle in the annular channel can be considered as saturated porous medium and the central channel can be viewed as clear region for thermohydraulic studies. In the present work, a 3D Computational Fluid Dynamics (CFD) analysis is performed on CICC by considering dual channel CICC as partially filled saturated porous medium. The 3D geometry was developed and meshed in GAMBIT-2.1.6, and exported to a commercial solver FLUENT -6.3.26 for further analysis. The effect of mass flow rate ( 6 - 10 g/s) of supercritical helium (SHe) on the velocity and pressure gradient distributions (axial and radial) in the transverse plane is presented. These studies resulted in estimating the mass flow repartition between the two channels and pumping power required to pump the SHe in CICC. In addition, the present CFD analysis brings a clear perspective of the phenomena of flow and heat transfer in complex geometries such as CICC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.