Abstract

The design of scaffolds which mimic the stiffness, nanofiber structure, and biochemistry of the native extracellular matrix (ECM) has been a major objective for the tissue engineering field. Furthermore, mimicking the innate three-dimensional (3D) environment of the ECM has been shown to significantly altered cellular response compared to that of traditional two-dimensional (2D) culture. We report the development of a self-assembling, fibronectin-mimetic, peptide-amphiphile nanofiber scaffold for 3D cell culture. To form such a scaffold, 5 mol % of a bioactive PR_g fibronectin-mimetic peptide-amphiphile was mixed with 95 mol % of a diluent peptide-amphiphile (E2) whose purpose was to neutralize electrostatic interactions, increase the gelation kinetics, and promote cell survival. Atomic force microscopy verified the fibrilar structure of the gels, and the mechanical properties were characterized for various weight percent (wt %) formulations of the 5 mol % PR_g-95 mol % E2 peptide-amphiphile mixture. The 0.5 wt % formulations had an elastic modulus of 429.0 ± 21.3 Pa whereas the 1.0 wt % peptide-amphiphile hydrogels had an elastic modulus of 808.6 ± 38.1 Pa. The presence of entrapped cells in the gels decreased the elastic modulus, and the decrease was a function of cell loading. Although both formulations supported cell proliferation, the 0.5 wt % gels supported significantly greater NIH3T3/GFP fibroblast cell proliferation throughout the gels than the 1.0 wt % gels. However, compared to the 0.5 wt % formulations, the 1.0 wt % hydrogels promoted greater increases in mRNA expression and the production of fibronectin and type IV collagen ECM proteins. This study suggests that this fibronectin-mimetic scaffold holds great promise in the advancement of 3D culture applications and cell therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call