Abstract
Based on the three-dimensional transient heat conduction equation and the elastic stress-strain equation, the temperature rise, distortion, and equivalent stress distributions of a high-reflectivity silicon reflector and a white bijou window irradiated by a high-power sloped annularly distributed laser beam are simulated using a three-dimensional finite element model (FEM). The effects of laser intensity, output duration, beam obscure ratio, and laser intensity spatial gradient on the results are especially investigated. The effects of mirror and window thermal distortion on laser beam phase aberrations are also evaluated. This noncylindrosymmetric three-dimensional FEM can be used to evaluate high-power, high-energy, laser beam-induced thermal effects on optical components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.