Abstract

This paper studies the three dimensional buckling and post buckling process of compressive long elastic beam confined by cylindrical lateral constraint without friction. Based on theoretical analysis and numerical simulations, four stages are identified and characterized as the compressive axial displacement increases from zero: initial two dimensional shape, small three dimensional shape, three dimensional helix shape and three dimensional alpha shape. Critical axial displacement at the transition points between four deformation shapes are studied, and the effect of geometrical parameters such as beam length and constraint size on critical displacement are examined. Special emphasis is paid to identify the transition points from three dimensional helix shape to three dimensional alpha shape, and the transition can be divided into jump regime (sharp transition) and no-jump regime (smooth transition) based on the criterion whether number of helical periods is larger or smaller than one. At the same time, critical number of helical periods in three dimensional helix shape is linearly correlated with a nondimensional geometrical parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.