Abstract

A numerical solution has been obtained for the unsteady three-dimensional stretching flow and heat transfer due to uncertainties of thermal conductivity and dynamic viscosity of nanofluids. The term of nanofluid refers to a solid–liquid mixture with a continuous phase which is a nanometer sized nanoparticle dispersed in conventional base fluids. The unsteadiness in the flow and temperature fields is caused by the time-dependent of the stretching velocity and the surface temperature. Different water-based nanofluids containing Cu, Ag, and TiO2 are taken into consideration. The governing partial differential equations with the auxiliary conditions are converted to ordinary differential equations with the appropriate corresponding conditions via scaling transformations. Comparison with known results for steady state flow is presented and it found to be in excellent agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.