Abstract
Thanks to its ability to yield functionally rather than anatomically-based information, the three-dimensional (3-D) SPECT imagery technique has become a great help in the diagnostic of cerebrovascular diseases. Nevertheless, due to the imaging process, the 3-D single photon emission computed tomography (SPECT) images are very blurred and, consequently, their interpretation by the clinician is often difficult and subjective. In order to improve the resolution of these 3-D images and then to facilitate their interpretation, we propose herein to extend a recent image blind deconvolution technique (called the nonnegativity support constraint-recursive inverse filtering deconvolution method) in order to improve both the spatial and the interslice resolution of SPECT volumes. This technique requires a preliminary step in order to find the support of the object to be restored. In this paper, we propose to solve this problem with an unsupervised 3-D Markovian segmentation technique. This method has been successfully tested on numerous real and simulated brain SPECT volumes, yielding very promising restoration results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.